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Executive Summary 
Project Description: Physical-statistical models using Bayesian hierarchical methods 
are a recent innovation.  They combine both physical and statistical elements in one 
model.  Building on these ideas we will develop a hierarchical framework linking 
suitable physical processes, such as the El Niño-Southern Oscillation (ENSO), to 
rainfall and temperature in the region. 

Project Methodology:  

• Determine climate variables of interest to stakeholders, along with potential 
predictors and key physical processes; 

• Use Bayesian hierarchical modelling to develop a framework to link a 
physical process model with a statistical model for the climate observations of 
interest. This will allow us ultimately to produce probabilistic forecasts for 
climate variables of interest that integrate physical knowledge with 
observations. Given the small size of this project, we will be limited to using 
conceptual models of climate physics. The so-called physical-statistical model 
developed will be implemented using contemporary methods of Bayesian 
computation, based on particle filters.  

• Compare a variety of such approaches and benchmark available algorithms for 
computational efficiency and ease of use. 

• Select the most promising approach and document. 
 

Milestones for Year 1: 

1. Complete & document relevant literature with modelling options. 

2. Develop proto-type physical-statistical model. 

3. Benchmark performance of most promising model-fitting algorithm. 

Outlook for Year 2: 

Year 2 will be focused on software implementation and investigation of potential 
forecast skill. 

 

Summary of Progress:  

The objective of this project is to develop and test a prototype physical-statistical 
model linking climate variables and physical drivers, to be implemented in project 
3.2.7. Physical-statistical models using Bayesian hierarchical methods are a recent 
innovation.  Hierarchical modelling is based on the fact that the joint probability 
distribution of a collection of random variables can be decomposed into a series of 
simpler conditional probability models.  It combines both physical and statistical 
elements, and expert knowledge or judgement in one model (Berliner, 2003). 

A key choice to be made has been which physical processes to focus on. Through 
consultation with CSIRO Climate we decided to focus on ENSO as the key driving 
process, and selected the recharge oscillator model of Burgers et al. (2005) for the 
physical component. We have extended this model to incorporate seasonal forcing 
and measurement error, and successfully tested our implementation for computational 
efficiency. We have compiled all the data needed to fit this model to observed data. 
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The physical-statistical model also incorporates the possibility of other driving 
processes, which are captured via empirical relationships. 

To set up project 3.2.7 we have also explored and benchmarked appropriate 
algorithms to implement the model. We have examined two scenarios: off-line data 
processing and on-line, streaming data. The latter case provides a mechanism to 
dynamically update the model as new data became available. In both cases we find 
that methods based on Markov chain Monte Carlo simulation are viable. For 
streaming data a further choice is the use of particle filters, which may be thought of 
as a general approach to data assimilation. 

 

 



 

1 Introduction 
This project is focused on developing physical-statistical methods for seasonal climate 
forecasting. Our intended output is a probability distribution for the forecast quantity 
of interest, so we plan to make use of a contemporary statistical technology known as 
Bayesian hierarchical modelling (Berliner, 2003). The essence of these methods is 
that, where possible, we use physically-based models for the processes concerned 
blended with empirical models where this is not possible. The framework adopted is 
probabilistic in nature, providing a natural means to integrate and quantify all sources 
of uncertainty. The outputs are probability distributions which we can use to 
summarise quantities of interest, particularly physical model parameters and forecasts 
of climate outputs (rainfall, temperature etc). 

This project is very small with some risk attached as this is a method development 
activity. Resources are therefore focused on proof-of-concept, with implementation to 
follow in project 3.2.7. Given this, in consultation with CSIRO Climate we decided to 
focus this project on forecasting climate processes strongly influenced by the El Niño-
Southern Oscillation (ENSO). The principal reason for this is that ENSO is quite well 
understood, with a well established literature on physically-based models for the 
phenomenon. Indeed, there is a significant literature on relatively simple models that 
capture the essential features of ENSO.  We note in particular the literature on 
delayed oscillators (Suarez and Schopf, 1988) and recharge oscillators (Burgers et al., 
2005), the models for which can be written as quite simple equations. Despite this 
simplicity of representation these models are capable of considerable complexity 
when realised. 

We consider two modes of forecasting: 

1. Calibrating a forecasting model and then applying it as new data arise, which we 
term off-line processing; 

2. Running the model in on-line mode with streaming data, much as in a data 
assimilation problem. 

Conventional Bayesian model-fitting methodologies tend to focus on Markov chain 
Monte Carlo (Robert and Casella, 2004). This is an iterative technique, so is quite 
suitable for off-line problems. However, this may not be the case for streaming data 
and a methodology known as sequential Monte Carlo (Doucet et al., 2001) has been 
developed for this situation. The algorithms developed in this field are known by a 
number of names, but perhaps most often as particle filters. Particle filters use a 
weighted sample (the so-called “particles”) from the state space of interest, which are 
resampled at each step of the filter to ensure only the fittest survive. Particle filters 
generalise readily to nonlinear models and/or non-Gaussian error structures, so we 
explore these methods in particular. 

A key concern in model development is proper accounting for uncertainty, and 
integration of uncertainty into any forecasts that we derive. This is a strength of the 
Bayesian approach since it is based on probabilistic representation of knowledge 
acquisition. We identify the following key types of uncertainty: 

1. Prior uncertainty captured using expert knowledge regarding physical 
parameter values and boundary conditions; 

2. Representational uncertainty, recognising that no physical model is 
entirely correct; 
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3. Measurement error, recognising that we cannot take perfect 
observations of any physical system. In many geophysical applications 
this source of uncertainty can be substantial. 

We account for each of these uncertainty sources in the model we develop. 

The remainder of this report is structured as follows.  In the next section we describe 
the stakeholder consultation we have undertaken and the scope of the project. In 
section 3 we review the literature on models for ENSO that capture its essential 
features. In section 4 we develop a physical-statistical model, and scope its essential 
components. In section 5 we identify and benchmark algorithms for fitting this model. 
The final section provides a discussion of findings and some conclusions. 

2 Stakeholder Consultation 
Based on consultations with CSIRO Climate, the primary focus in order of priority 
will be: 

• Rainfall 

• Temperature 

o Maximum 

o Minimum 

o Range 

Given the small size of this project (0.8 FTE total effort over 2 years) we will focus 
attention on processes influenced by the El Niño-Southern Oscillation (ENSO). The 
objective of this project is to develop a physical-statistical model for seasonal 
forecasting purposes to be implemented in project 3.2.7. Our effort is focused on 
developing a suitable demonstrator of the proposed approach. 

3 Models for ENSO 
Two well known models for the fundamental ENSO mechanism are the delayed 
oscillator of Suarez and Schopf (1988) and the recharge oscillator of Jin (1996, 1997). 
Both approaches yield relatively simple differential equation models that we can use 
to assist in forecasting. A key paper exploring a delayed oscillator mechanism from a 
physical model perspective is Battisti and Hirst (1989). 

Suarez and Schopf (1988) proposed a nonlinear delayed oscillator model for ENSO, 
which we refer to here as the S&S model. This model sought to explain the periodic 
behaviour of ENSO exhibited in simple circulation models (e.g., Cane and Zebiak, 
1985). The S&S model conceives of ENSO arising as linear growth of some initial 
disturbance, which is tempered by local nonlinear effects, such as advective processes 
in the ocean and moist processes. These local nonlinear effects are approximated 
using a cubic term, so on a suitable scale the model may be written as: 

( ) 3,f t f f= −&  (1)  

where f represents the magnitude of the growing disturbance. The S&S model now 
invokes the argument that the growing disturbance generates (westward propagating) 
Rossby waves, which reflect as (eastward propagating) Kelvin waves. These Kelvin 
waves act as a delayed damping effect, so the model may be extended to: 
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 ( ) ( )3 .f t f f f tα δ= − − −&  (2) 

Here δ is a non-dimensional delay term and α measures the influence of the returning 
wave relative to damping effects. 

Note however that the S&S model does not incorporate periodic forcing, as was done 
by Minobe and Jin (2004): 

 ( ) ( ) ( )3 cos 2f ff t f f f t A t Tα δ π= − − − +& . (3) 

We refer to this as the M&J model, which was shown by the authors to demonstrate 
threshold behaviour arising from positive feedback in the model. Their results imply 
that the feedback mechanisms present in this model can have significant implications 
for the nature of medium to long term variability of ENSO, and so processes driven 
by ENSO. 

The most recent contribution to the literature on recharge oscillators for ENSO is 
Burgers et al. (2005), who note that eastern Pacific sea surface temperature (SST), 
denoted TE, and mean equatorial thermocline depth (h) are key variables related to 
ENSO. They generalise the recharge oscillator of Jin(1997), which is driven by two 
prognostic and two diagnostic equations: 

( ) ( )
( ) ( )

Ẁ W

h E

h t r h

T t T h1

.

E E

E

E W

bT
h h

ατ

ε γ

= − +

= − −

&

&

τ
τ

=
= +

 (4)  

Here hW denotes the western pacific thermocline depth anomaly; hE denotes eastern 
Pacific thermocline depth anomaly; τ denotes the central Pacific zonal wind stress 
anomaly; TE denotes the eastern Pacific SST anomaly. 

The first equation gives the collective response of the western Pacific to wind stress 
changes through Kelvin waves, Rossby waves and western boundary reflection. The 
last equation states that the thermocline tilt reacts essentially instantaneously to wind 
stress. We do not reproduce here the full argument made by Burgers et al. (2005), 
which leads to a simple linear system of differential equations: 

( ) ( )

( )

,

where , .E

X t AX t

T h

=
 

′X =

&

 (5) 

The coefficients of the matrix A rms of the parameters of the 
model.  Burgers et al. is model to available data, 
and its capacity to forecast ENSO. The data ey used for their study are described in 
Table 1. 

Based on the results of their empirical study, Burgers et al. (2005) propose setting  

 0

0

2
0

A

 are easily obtained in te
 (2005) also considered the fit of th

th

γ ω
ω

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

. (6) 

These model equations (6) are identical to a classical damped oscillator, with 
momentum TE and position h. The parameter estimates in model (6) are found to vary 
significantly with the seasonal cyc rn to this point later in the report. le. We will retu
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Table 1 Data sources for the model fitting and ENSO forecasting study of Burgers et al. (2005). 

Model Variable Data Set 

ET  Observed NCEP Niño3 index 

τ Average of the FSU objective pseudo wind 
stress 

Thermocline depth BMRC data set of the 20° isotherm depth: 
 

- Average over 130°E-170°E W

h

h

E - Average over 150°W-90°W 

   h- Average over 130°E-80°W 

 

3.1 Which ENSO Model to Use? 
We have a number of choices open to us: 

1. Use the S&S model fitted separately to different periods of the annual cycle; 

2. Use the M&J model to incorporate periodic forcing, the frequency of which 
could be estimated or be assumed to be annual; 

3. The Burgers model (6) could be used, fitted to different parts of the annual 
cycle or periodic forcing could be introduced. 

Given the relatively small amount of effort available in this project, we will focus on 
the Burgers model for winter season rainfall.  

A typical realisation of this model is shown in Figure 1 below, and we see that the 
system has a stable limit point at (0, 0); the parameter values for this example are 
drawn from Burgers et al. (2005). In practice of course this pattern would be disturbed 
by interactions with other physical processes, and in our forecast scheme we will 
essentially be assimilating current data and using this model to maintain a forecast of 
the climate outputs of interest. 

4 Developing a Physical-Statistical Model 
An exciting recent development is the use of Bayesian hierarchical methods to 
develop hybrid physical-statistical models, which provide for a sophisticated 
combination of physical and statistical modelling. The idea driving these methods is 
that there are many sources of information available to aid understanding of physical 
systems. We may make use of observations of various kinds, as well as models of 
various sub-systems. The Bayesian hierarchical approach allows us to integrate these 
sources of information, including the uncertainty in each component. For a general 
introduction see Wikle (2003). Some examples of applying this thinking to physical 
processes may be found in Berliner et al. (2003), Berliner (2003) and Berliner et al. 
(2000).  

Suppose that we are studying a physical process P, which may be a collection of sub-
processes, with physical parameters η. In observing the process P we generate data D 
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and so statistical parameters θ, such as a measurement error variance. We assume that 
all of these elements are subject to uncertainty, and seek to develop a model for the 
joint probability distribution denoted [ , , , ].D P η θ  We may apply Bayes’ theorem 
(Bernardo and Smith, 1994 pp 2) to factorise this joint probability model as 

 [ ][ , , , ] , , , , .D P D P Pη θ η θ η θ η= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ θ  (7) 
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Figure 1 Realisation of the Burgers et al. model with starting value (-0.5, 0.3). 

 

We may now make some modelling assumptions. In the first term, conditional on P 
and θ  there is no further information in the physical parameters η about the data D. 
Similarly for the second term, given η there is no further information in the statistical 
parameters θ on the physical process P. We may therefore simplify (7) to 

[ ] [ , , , ] , , .D P D P Pη θ θ η η θ= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (8) 

We see that the joint pr odel for the data, a 
process model and a prior param eters model captures 

obability model is the product of a m
eters model. The prior param



 

available information on the parameters before the data are collected. For more details 
see Berliner (2003). A key point to note about this so-called physical-statistical model 
is the interconnection between the data and process models. The physical and 
statistical components are coupled by conditioning the data model on the physical 
process P.  

It can be shown that the distribution of the process and parameters conditional on the 
data, the so-called posterior distribution, is such that 

 [ ][ , , ] , , .P D D P Pη θ θ η∝ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ η θ  (9) 

In this way we can learn about the physical parameters through observation. 

Algorithms for fitting physical-statistical models represent an active area of research. 
Campbell (2005) uses the importance sampling Monte Carlo approach of Berliner et 
al. (2003). This requires us to generate a relatively small ensemble from the prior 
parameters model, and pass each member of the ensemble through the physical 
process model. This physical process ensemble is then resampled so that a much 
larger sample drawn approximately from the posterior distribution (9) is obtained. 
This is done by assigning probabilities to each member of the ensemble, calculated 
using the observed data, and then sampling from them with replacement. Ensembles 
close to the observed data will be assigned a relatively high probability. 

In this project we are seeking to develop a physical-statistical model for climate 
variables that are influenced by ENSO. A suitable graphical model (Lauritzen and 
Spiegelhalter, 1988) is shown in Figure 2 below, with quantities defined in Table 2. A 
graphical model is a way of picturing a probability model. In a graphical model of this 
type the probability distribution of each node is independent, conditional on its so-
called parent nodes- the nodes with arrows leading to it. We see that the physical 
process is dependent upon a set of process parameters and boundary conditions. A 
number of quantities are then dependent upon the physical process. 

To the left-hand side of the figure we have the observations of the physical process, 
inducing a set of parameters to represent features such as measurement errors. To the 
bottom right we have observations of climate outputs that are though to be dependent 
on the physical process. In each case, as for the observations on the physical process, 
a set of parameters of a statistical nature is induced. We assume in this case that no 
physical model is available to map P onto the climate outputs, so these models will be 
empirical in nature, including possibly a set of additional empirical predictors in each 
case. In this sense the approach being developed is novel when compared to other 
physical-statistical models in the literature. 

A feature of graphical models is that we can write down a probability model for the 
uncertain quantities in the graph by working top-down through to the so-called 
terminal nodes that have no subsequent node in the graph: 

 
1

, , , ,
m

P P Y i i i
i

P B Y P C P Aθ θ
=

⎡ Ψ ⎤ × ⎡ ⎤ × ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∏ . (10) 
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Figure 2 Graphical model displaying inter-connections between the ENSO process (P), 
observations on ENSO (Y) and various climate outputs (C1, . . ., Cm). 

 

4.1 Mathematical Formulation 
To express the graphical model of Figure 2 in more mathematical terms some 
additional notation is helpful: 

{ }
{ }
{ }
{ }

1

1

1

, , ,

, ,

,

, , .

Y m

m

m

C C

Y

A A

θ θ θΘ =

=

=

=

C

D C

A

K

K

K

[

 

 

We may now apply Bayes’ theorem to develop an expression for the joint probability 
of the random quantities in the graphical model shown in Figure 1: 

] [ ], , , , , , , , , ,P P P P PP B P P BΘ Ψ = ⎡ Θ ⎤ ⎡ Ψ ⎤ Θ Ψ⎣ ⎦ ⎣ ⎦D A D A  

after applying standard arguments to simplify the resulting conditional distributions 
(Berliner, 2003). The key difference to a conventional case is the data model: 

, , , , ,P Y P⎡ Θ ⎤ = ⎡ Θ ⎤⎣ ⎦ ⎣ ⎦

1

, , , ,
m

i i i Y
i

C P A Y Pθ θ
=

⎧ ⎫
= ⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦

⎩ ⎭
∏

D A C A
 



 

assuming conditional independence of Y and C, which matches equation (10). In a 
more conventional case the empirical predictors { }iA would not be present, but as we 
are unlikely to explain all variation via ENSO alone it seems wise to retain these in 
our model framework. 

The implication of equation (10) is that we need to characterise the relationship 
between the the climate outputs { }iC  and ENSO (P), as well as the empirical 

predictors { }.iA  This will require some experimentation with the full data base, and 
will be taken up in project 3.2.7. 

 
Table 2 List of variables used in Figure 2. 

Uncertain 
Quantity 

 
Description 

PΨ  Physical process parameters 

PB  Boundary conditions 

P Physical process model 

Y Observations of the physical process 

Yθ  Statistical parameters induced by 
observing the physical process 

Ci Observations of the ith climate 
output of interest 

Ai Empirical predictors additional to P 

iθ  Statistical parameters induced by 
observing linking in empirical 
predictors { }iA  

4.2 Posterior Distributions 
We are primarily interested in learning about the physical process parameters and 
statistical parameters linking the climate outputs to the physical process. We do this 
by calculating probability distributions for these parameters given the observed data, 
and these are known as posterior distributions. Applying Bayes’ theorem we see that 

 

[ ]
[ ]

[ ]
1

, ,

, , ,
m

i i Y
i

P P

C P Y P Pθ θ
=

= ⎡ Θ⎤ ⎡ Ψ⎤ Ψ Θ⎣ ⎦ ⎣ ⎦
⎧ ⎫

= ⎡ ⎤ ⎡ ⎤ ⎡ Ψ⎤ Θ Ψ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎩ ⎭
∏

D

Predictive Distributions 

, , , , ,

.

P P⎡Ψ Θ ⎤ ∝ ⎡ Ψ Θ⎤ Ψ Θ⎣ ⎦ ⎣ ⎦D D

 (11) 

4.3 
By forecasting we mean projecting the model into the future, and capturing the 
uncertainty in the forecast. This is very easy to do in a Bayesian framework, 
particularly when implemented via simulation methods. For each ensemble in the 
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posterior sample we simply continue to evaluate the model beyond the current 
observed maximum time point. These so-called predictive samples can be used to 
summarise the forecast. 

It is important to note that the forecast is being driven in part by a physically-inspired 
model for ENSO. Campbell (2005) found that forecast lead times in a physical-
statistical model can be longer than those obtained via a purely empirical approach. 
This result was found in the context of a turning point in the physical process, a 
phenomenon that is difficult to forecast by purely empirical means. 

5 Model-Fitting Algorithms 
Effective model-fitting, or calibration as it is sometimes known, is crucial to 
developing a skilful forecast model. In the Bayesian framework this amounts to 
characterising the probability distributions of uncertain quantities of interest, such as 
predictive distributions. Expressions for these can be written down, as above, but it is 
rarely possible to evaluate them analytically; numerical methods are therefore 
typically required.  

Simulation methods are the dominant approach to solving such problems, but we first 
need to consider more deeply how a forecast scheme might be applied in practice. We 
distinguish two cases: 

1. The model is calibrated and validated, then applied essentially as-is as new data 
arrive. This approach is termed off-line processing. 

2. The model is updated as new data arrive, so this approach is termed on-line 
processing. In this context the data are said to be streaming. 

The most widely-used approach to Bayesian computation is an iterative method 
known as Markov chain Monte Carlo (MCMC). This set of algorithms proceeds by 
generating a large sample from the posterior distribution of interest via a Markov 
random walk through the corresponding parameter or state space of interest. This can 
be very computationally intensive by the standards of conventional statistical 
methods. 

An alternative approach, which is commonly used with streaming data, is known as 
particle filtering. The fundamental idea of the particle filter is that whilst a particular 
probability distribution may be difficult to sample from, it is typically easy to evaluate 
values that are proportional to the probability density. We may then draw a sample of 
so-called particles from essentially any distribution, then use values of the density 
function we are interested in to resample these particles. After resampling the 
particles follow the distribution of interest. 

We provide some more details on these approaches below. 

5.1 Bayesian Computation 

5.1.1 Markov Chain Monte Carlo (MCMC) Methods 
At the heart of MCMC is the Metropolis-Hastings algorithm. To define the algorithm 
we have to define the structure of the Markov chain. The Metropolis-Hastings 
algorithm constructs a probability function ),( ′Θ ΘP

Θ Θt = Θ Θt + = ′1

′Θ  for Θ t +1 from a probability distribution q( , )

 describing the state transition 
from  to at iteration t as follows. First, generate a candidate value 

, which for now is essentially Θ Θ′
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arbitrary. Accept this value with probability α ( , )Θ Θ′  and move to Θ . If this 
move is rejected, with probability 1

Θt + = ′1

− ′α ( , )Θ Θ , set Θ  and so remain at the 
current state. This forms a Markov chain with transition probabilities  

Θt+ =1

)P q) (     ( ,Θ , ) ( ,Θ Θ Θ Θ Θ′ = ′ ′α

( )

( ) Θ ′′′′

Θ ′′′′

d

d)

∫Θ ′′

′′

Θ−

Θ ′′Θ

q

q

,(

,(∫Θ

=

=ΘΘP

1

),(

ΘΘΘ ′′

ΘΘ−

,)

,(1)

α

α
    

If we write the posterior distribution of interest given data X Θ Θπbg b g= f |X  for 
convenience and define   

 α
π
π

π

π

)
)

, (
Θ

Θ′
⎫
⎬
⎭

 if 

if 
( , ) min , )

)
Θ Θ Θ

Θ
′ =

⎧
⎨
⎩

′ >

′ =

⎧
⎨
⎪

⎩⎪

1 0

1 0 

( ) ( ,
( ) ( ,
Θ Θ
Θ Θ

′ ′q
q

                                     

) (

( ) ( ,

Θ Θ

Θ Θ

q

q
  

then  

 π π( )Θ ( , ) ( ) ( , )Θ Θ Θ Θ Θp p′ = ′ ′  (12) 

Equation (12) defines the condition of reversibility, a sufficient condition for π ( )Θ to 
be the limiting distribution of the chain provided q( , )Θ Θ′ is chosen to be irreducible 
(i.e., all states can be sampled from  
steps until the chain returns to its c  an integer ter 
than 1) (Smith and Roberts, 1993). 

A number of variants of this genera  are available (Tierney, 1994). 
Amongst the most important are s. Rather than 
generating candidate values for 

 any given state) and aperiodic (ie, the num
ultiple of

updating algorithm

ber of
 greaurrent st

single-site 

ate is not a m

l algorithm

Θ , these algorithm
ensional 

s generate candidate values for 
each element of Θ  in turn. Thus for p-dim Θ , a candid

ove from 
ate value θ i

∗  from a 
univariate density i i( , )Θ θ ∗ ),,,( 11 ′q ,,is proposed and the m =Θ θ − piθ i θθ KK  

to ),,( *
1

* ′=Θ θ K

 

,,, pi θθ K1−iθ  is accepted with probability   

π θ
π θi i

q
q

( ) ( ,
( ) ( ,
Θ Θ
Θ Θ

∗ ∗

at the single-site updating al

i i )
)

,∗

⎫
⎬
⎭

1

gorithm

α i ( , ) = min
⎧
⎨

Chan and Geyer (1994) show th  also converges to 
( )

Θ Θ∗ .  
⎩

π Θ  if the univariate candidate cible and aperiodic. 
This technique also extends ters at a time using 
multivariate updates. This is important in  of the parameters are 
highly correlated. 

Generally the most efficient algorithms use th ean for the next 
proposed state, allowing the algorithm to high probability and 
explore them. In the terminology of Tierney  walk chains. An 
alternative is to propose candidate states  distribution at each step, 
regardless of the current state. A chain constructed in this way is known as an 
independence chain. If carefully chosen th  walk chains 
tend to be more robust and efficient, provid proposal densities is 
chosen appropriately.  

 generation densities are i
 to updating blocks of pa

cases where so

 locate regions of 

from the sam

ed the spread of the 

rredu
rame
me

e current state as the m

(1994) these are random
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is can work well, but random



 

In practice it is found that candidate generation densities having variances about the 
same or somewhat larger than the marginal posteriors work well. This is in the sense 
of exploring the posterior density in an efficient manner, one measure of which is the 
acceptance rate of the algorithm. Clearly if proposed states are only rarely accepted 
the algorithm is very inefficient. Conversely, too high an acceptance rate suggests that 
only a small region of the posterior density is being explored. A balance needs to be 
struck between these extremes, and an acceptance rate of between 30% and 70% 
seems to work well. Some theoretical and practical justification for this rule of thumb 
has been found (e.g., Roberts and Poulson, 1994; Roberts and Smith, 1994; Weir, 
1997). 

Perhaps the most well known MCMC method is Gibbs sampling. Gibbs sampling 
requires that each of the full conditional distributions ( ) ,j jθ⎡ ⎤Θ⎣ ⎦X  be specified, 

where the notation  denotes that the jth parameter is omitted. The ( )j ⋅  notation is 
used to denote distribution or density as required.  

Gibbs sampling proceeds as follows: 

1. Select a starting value for the parameter vector, Θ . 0 1 0
= ′θ θ, ,K pd i

2. Sample a value of θ1 from the distribution θ 1 1|Θbg. 

3. Sample a value of θ 2 from the distribution θ 2 2|Θbg. 

4. … 

5. Sample a value of θ p  from the distribution θ p p|Θbg, which completes a sample 

for the parame Θ. 
6. If enough sample have been completed then ise, return to step 1 

replacing Θ0  by Θ  found at step 5. 

We pling is a single-site updating Metropolis-Hastings algorithm in 
which the candidate generation densities are the full conditionals, and the acceptance 
probability is set to 1 because the full conditionals attains a technical condition known 
as reversibility (see equation (12)) without the need for a rejection step. 

For off-line processing in project 3.2.7 we would expect to use mixtures of Gibbs 
sampling and Metropolis-Hastings steps, depending on the nature of the empirical 
models we develop. Ideally we will use Gibbs sampling as much as possible as it 
tends to be faster overall, unless efficient one-step multivariate proposals are 
available. 

5.1.2 Particle Filters 
As noted above, MCMC methods are iterative in nature so normally best suited to off-
line processing applications. In situations where processing is on-line with streaming 
data iterative methods tend not be practical. For computing posterior distributions in 
such situations a collection of techniques under the general heading Sequential Monte 
Carlo methods have been developed (Doucet et al., 2001). 

ter vector 
 stop. Otherw

 see that Gibbs sam
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The physical process model we have chosen is relatively simple, so if we applied a 
normally distributed error model then in principle we could make use of the Kalman 
filter to update posterior distributions of interest. However, it is well known that the 
Kalman filter is not extendable to nonlinear/non-Gaussian models. We therefore 
choose to focus on methods known by various names, which we refer to as particle 
filters. These methods use weighted realisations from the state space of interest (a 
future observation, say) to summarise the relevant probability distribution (predictive 
distribution). 

To illustrate these methods, first consider the directed graph component for the ENSO 
process alone taken from Figure 2, but now with a time component (t), shown in 
Figure 3 below. 

1 1

1 1

t t t

t t tY Y Y

− +

− +

↓ ↓ ↓
K K

K K

P P P→ → → →

1: 1t

 

Figure 3 Directed graph component for the ENSO process alone 

 

Of primary interest is predicting the ENSO state Pt given observations y − , and it is 
straightforward to show that 

 ( ) ( ) ( )1: 1 1 1 1: 1 1.t t t t t t tp P y p P P p P y dP− − − − −= ∫  (13) 

The first component inside the integral is the discretised physical process model, 
whilst the second component represents an update step. In practice it is not 
straightforward to evaluate this integral, so Monte Carlo methods are used because 
their rate of convergence is independent of the dimension of the integrand. For any 
deterministic method the rate of convergence decreases as the dimension of the 
integrand increases.  

The most common approach is based on importance sampling (Smith and Gelfand, 
1992). This technique works as follows. Suppose we wish to estimate the integral 

( ) ( ) ( ) ,pE h x h x p x dx=⎡ ⎤⎣ ⎦ ∫  

for some function h() and probability density function p() via Monte Carlo. We first 
generate a random sample 1, , Nx xK  from the probability function p(), then clearly 

(( ) ).p j
j

E h x N h x≈⎡ ⎤⎣ ⎦ ∑1−  

This is the standard M ator, but suppose that p() is hard to simulate 
from but some (ideally sim ery easy to simulate from. By 
definition: 

( )

onte Carlo estim
ilar) probability function is v

( ) ( )
( ) ( )

( ) ( ) ( )

p

h x p x
E h x x dx

x

h x w x x dx

π
π

π

=⎡ ⎤⎣ ⎦

=

∫

∫  

( ) ( ) .E h x w xπ= ⎡ ⎤⎣ ⎦
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Thus, if we generate a random sample 1, , Nx xK  from the probability function π() 
then 

( ) ( ) ( )1 ,p j
j

E h x N h x w x−≈⎡ ⎤⎣ ⎦ j∑  

where ( ) ( ) ( ).j jw x p x xπ= j  In the language of sequential Monte Carlo, the sample 

members { }jx are known as particles, with weights { }.jw  

It turns out to be quite straightforward to adapt this method to sequential estimation 
problems (Doucet et al, 2001, pp 9-10), such as defined by equation (13). 
Unfortunately it can be shown that naïve application of sequential importance 
sampling will lead to skewed weights as the time step grows larger, quite quickly 
leading to just one particle having non-zero weight. A solution to this problem is 
provided by the so-called bootstrap filter (Gordon et al., 1993) which resamples the 
particles using the importance weights. This ensures that only the ‘fittest’ particles are 
allowed to survive, ideally with equal weights. 
It is possible to improve the performance of particle filters in many respects, but it 
seems that the bootstrap filter is well suited to our application. Our proposed approach 
to project 3.2.7 is therefore as follows: 

1. Use the boostrap filter to maintain a recursive estimate of the prediction density 
(13); 

( ) 1:, tp2. Build an off-line model for i tC t P A⎡ ⎤⎣ ⎦ ; 

3. Using the particles from step 1 and the off-line model for 2, generate ensemble for 
predictive distribution for Ci. 

5.2 The Physical Process Model 
It is clear from the above discussion on fitting physical-statistical models that we have 
to calculate realisations from the process model, which requires solution of the model 
equations. The model of Burgers et al. (2005) can be written as ( ) ( ) ,X t X t= A& so the 

fundamental solution is given by ( ) ( )exp . ,X t t= A k

1 ,E JE−=A

 where k is an arbitrary vector 
determined from the initial conditions. A general method of solution will be to note 
that the matrix A can be eigen-decomposed as where J is in Jordan 
canonical form and the columns of E are formed from the eigenvectors of A. It is then 
straightforward to calculate 

( ) ( )1 expexp .At E Jt−= E  

However, it will be much faster to solve the equations by forward integration, noting 
that: 

 ( ) ( ) ( ).X t t X t t X tδ δ≈ + −&   

for small 0tδ > . The forward integration is therefore driven by 

 ( ) ( ) ( )X t t I tA X tδ δ+ ≈ + , (12) 
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commencing from a suitable initial condition ( )0X t . This essentially discretises the 
process model. 

5.2.1 Physical Model Extensions 
A couple of extensions of the Burgers et al. model are considered: periodic forcing 
and representational error. By representational error we mean uncertainty in the 
physical model itself, recognising that we are not completely certain of the dynamics 
of ENSO. Equation (5) may therefore be generalised to: 

( ) ( ) ( ) ( ) ,X t AX t P t S t= + +&

( )

 (13)  

where  

( )
 

( ) ( ) ( )1 cos 2 12
, ~ , .

cos 2 12 p

a t
P t S t N

a t
π
π

⎛ ⎞
= Σ⎜ ⎟ 0

2⎝ ⎠
 

In principle the period of the forcing could be estimated also (Campbell, 2005), but 
we neglect this for the present. An illustration of the behaviour that can be displayed 
by this system is shown in Figure 4 below. We see that the behaviour is much more 
complex than the base model (Figure 1); the periodic forcing is evident as is the 
stochastic error, so no simple limiting behaviour is observed in the phase diagram 
showing thermocline depth against SST (anomaly). 

6 Discussion and Conclusions 
Application of physical-statistical methods using Bayesian hierarchical modelling are 
growing in the literature, and have been used in many geophysical applications to 
date. Notable among these are ENSO forecasting by Berliner et al. (2000). Current 
forecasts using this approach are maintained at http://www.stat.ohio-
state.edu/~sses/collab_enso.php, and the probabilistic nature of Bayesian forecasts is 
apparent. The probability triangle plot at http://www.stat.ohio-
state.edu/~sses/collab_enso_regime_forecast.php is particularly effective tool in the 
context of this approach which incorporates regime-dependence. For each regime a 
posterior forecast probability is given, with a mean sea surface temperature plot for 
each regime. 

In this method-focused project we have developed a framework using relatively 
simple physical models for ENSO to develop a forecasting model, allowing for off-
line processing and streaming data. We have identified suitable algorithms in each 
case, which will be implemented in project 3.2.7. The forecasts obtained will be in the 
form of probability distributions, which can be used to summarise key information for 
users of the forecasts. 

The resources available to this project are somewhat limited, but given the 
methodological process that has been made it seems that aiming for a working 
prototype in project 3.2.7 is not unreasonable. 
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Figure 4 The Burgers et al. model with periodic forcing and stochastic representation error. 
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